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ViBRATIONS OF DouBLY-ROTATED-CuT QUARTZ PLATES
WiTH MoNocLINIC SYMMETRY*

R.D. Mindlin
P.0. Box 385, Grantham, NH 03753

ABSTRACT: For certain doubly rotated cuts of quartz, the elastic

stiffness constants have the same symmetry and absolute values as those
for certain rotated-Y-cuts; but four of the thirteen constants have signs
reversed. Mathematical solutions of corresponding problems for the two
types of cut have the same form but the numerical results may be the same
or different according as the constants with changed signs enter the so-

lution as even or odd powers or products. Examples of both are exhibited.

I. Equations for Doubly-Rotated-Cut Quartz Plates

Alpha-quartz has an axis of three-fold symmetry, say x3 , and
three axes of two-fold symmetry one of which is designated as x] in a
right-handed, rectangular coordinate system Xi » 1=1,2,3., A doubly
rotated set of axes is obtained by rotating the x1 system a positive

angle 6 about X1 and a positive angle ¢ about X, to a new

*
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orientation X The direction cosines SLU., of the X; axes with

respect to the xi axes are

X1 Xz X3

X 2..” = cos ¢ 2]2 = sin ¢ 23 © 0

X, 2.2] = -sin¢ cos 8 222 = ¢c0s $cos B 9.23 = sin @ 1)

X3 9.3] = sin¢g sin 8 232 - cos¢sing 9.33 = ¢co0s 6

Rotated-Y-cut and doubly-rotated-cut plates are cut with faces perpendicular
to x,, as shown in Fig. 1.

The elastic stiffness constants ¢ y NS,t,u =1,2,3 (or, in the

rstu
reduced indicial notation: cpq. p,q=1...6), referred to the rotated axes

Xj» are expressed in terms of the constants c?jkl s referred to the X s

by

. .0
Crstu c1’3‘!(1111'-?y’s,j’z'tkmull (2)

summed over 1i,j,k,2 = 1,2,3.

Of the 21 possible constants cgq(= cgp) » referred to the X;

coordinates, only six are independent inasmuch as, for a-quartz [1],

o _ .0 o _ 0 o _ .0 o 0 _,_0 o _1,0_ o0
€22 " €110 S55 ™ Caqr C23 ™ €130 Cyg ™ Csg * ~Co4» g6 = T (C11-C2)s

0'0'030‘0-0.0'0.0 t d
C15™Cp5%C35™C45™C15 = C26 " C36" 4634 = 0+

(3)




The values of the remaining c? » as given by Bechmann [2], are

Pq
o _ o _

C]] = 86. 74 C]Z - 6. 98
o _ o _

€33 = 107.2 Ci3 = 11.91 (4)
o _ o _ _

10

in units of 10'0 dyn/ecm or 10% N/ml .

From (2) and (3) we have

Crstu = STlater bt teatsoteztur * 7 (rtsz * frzter) g * St
* 33teatszbestys
+ cqal(0pp063 * Leglep) (Replystheati) + (Bp30e1#0,263) (et g +4q23) ]
CTICRURTUP L ORI ‘%‘(2r1“sz+2r22s1)(Et1‘uz+‘t22u1)]
+ cUalleas3hnty * e2%u) * Reatys(herter*ira%2)]
+ CRal(2p0 5730 ) (22 =Rk o) + (Ryply 3+ 38p) (1512 p8s))

* (R0t 001 M (R 38 142408 3) + (2432 5%8452 1 1230142 40000 ]

(5)

Finally, upon substituting (1) in (5), we find




12 * c?z c0526 + c$3 sin2

2

= o |
‘h*h |
i

6+ c$4 sin 26 cos 3¢

2

i3 * c?z sin"6 + c?3 cos 6 - c‘]’4 sin 20 cos 3¢

e (0 _ .0 0
€14 (c]3 clz) sin cosé + c;, cos 26 cos 3

15 = c§’4 cos 8 sin 3¢

€16 © c‘]’4 sin® sin 3¢

4 4 1

cyp * c(]’] cos g + °g3 sin'e + (c24 + g c?3) sin 20 + 4 c?4 sin® cosd6 cos 3¢
S O JU o 0 : 2 0 1.0 _;
€37 (cn+c33-2 c13 -4 c44) sin“26 + cq5 + 7 C1q sin 48 cos 3¢
Cop = - 2, sing cos3e + ¢ sin3e cos 6 + ] (c® ‘) ¢2.)sinds
24 N 33 2 '\"4477 13
- c?4 cos6 cos 36 cos 3¢

2

Cog = c?4(3 sin®e - 1) cos 6 sin 3¢

Crg = 3 c?asine cosze sin 3¢

R . 4 0 4 0 1 o .
€33 = €}y Sin'6 + c35 cos’ + (c44 ty c]3) sin

3

226 + 4 c?4 sin3e cos8 cos 3¢

8 cos o+ cg3 sin ecos39-%- (c24+;- c?3)sin 40 - c?4 sin® sin 36 cos 3:
2

2= o0 i
C34 C]]S1n

C35 = - 3 c?4 sin"8 cos & sin 3¢

2

36 = c']’4(3 cos“d - 1) sine sin 3¢

<1 (.0 ] 0 0 . 2 0 1 o
VI (cn * ey 2 c13 - 4 c“) sin“28 + ¢4y + 7 €14 sin 46 cos 3¢
C45 = c?4(3 cose - 1) sing sin 3¢

2

8 - c?4 sin 20 cos 3¢

|
!
Ce = €0, (3 sinze - 1) cos 8 sin 3¢ ‘
46 14 i
egs = 7 (<] - cfp) sine + c§, cos |

Ceg = - .} (c‘]’] -c‘]’z-z Cza) sin 26 + c‘]’4 cos 26 cos 3¢

2

Ce6 ™ % (c?] -c?z) cosze + c24 sin"6 + c?4sin 26 cos 3¢

(6)
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These are the cpq which appear in the stress-strain relations referred

to the X; ¢

T skP. or T

[}
©

ij = Sijke p = pa’q (7)

in which the strains, S.. or S , in terms of displacements, wu;, are

ij p i

LR L 23237547 U320 * U5

Sp2 =5, = vy 5 283 = Sg = uy 3+ ug (8)
S33 7537 U3 3 2595 % 56 = Uy 1t Uy,

33

Upon substituting (8) in (7) and the result in the stress-equations

of motion:

Tigi = P9y s (9)

we find the displacement-equations of motion:
or
Dyquy * Djpuz + Dygu3 = oy,

02]u] + DZZUZ + Dz3U3 = pﬁz Y (]])

Dayuy + Dgouy + Dyqus = oy,

o - -
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in which the Dij(= D..) are the differential operators

ji

Dy = S8 * Cogds * Cgs?3 * 2 Cggdpdy * 2 Cidydy + 2 Crg 913y
Djp = Cap% * Caads * Ce6d1 * 2 Cadady * 2 Cogdydp + 2 Cogdpdas
Dy = Cagds * Cssdy * Caqdp * 2 Sysdydy ¥ 2 Capdpdy * 2 Cypdsdy
D3 = esgd] * Coq%s * C3a23 * (cazreq)opdy* (cxghcys)isdy + (epstese)?2,
D3y = Ceuds * C3595 * C1sBy * (Cyigslagdy ¥ (eqatess)dyy * (ea6teys)dpdy s
Dz = Cas3 * Cr6ds * Cogds * (C15%Cge)dy3p (Cptcpq)dpdz (c qtcsg)ogdyy
(12)
where aiaj = 32/axiaxj , af = az/axf.
For traction-free planes parallel to the coordinate planes, it 1is
required that
on X] = constant:
Typ = Ty = 64957 * Cq52 * 1383 + Cq454 * 4555 * G156 = 0
Ti2 = T6 = Se151 * 6252 * 6353 * C4%4 * Cos%5 * Ce6%6 = 00 (13)

Tya = Tg = €515y * €557 * C5353 + Cg454 * €565 * C5656 = 03
on X2 = constant:
21 = T6 = S6151 * 6252 * C6353 * Cg454 * 6555 * Cee% = 0>
To2 = To = €057 * €52 * €353 * €454 * 2555 * 2656 = 0+ (14)

T3 = Ta ™ cpS1 * Ca252 * ©4353 * Cag¥a * Cas®s * Ca6%6 = 0

e e eripon [

~ e e v AT
i et s o~ o 17" < =g Fepa



on x3 = constant:

T31 = Tg = CgySy + CgpSp + C5353 + €555 + Co555 + Cg656 = 0
Tap = Ty = €18y * 4252 * C4353 + €4454 * €4555 * 4656 = 0» (15)
T33 = T3 = €3)5) * €35, * €3353 * €354 * €3555 * €365 = O

II. Rotated-Y-Cuts vs 60° Doubly-Rotated-Cuts

CASE A, 1f ¢=0, ©6#0 (the rotated-Y-cuts) then sin 3¢=0, cos 3¢ =1
and, from (6),

€157 C16 ™ Cp5=Cop = C35= C36=Cq5Cq6 = 0+ (16)

The remaining 13 constants are those for monoclinic symmetry with x; the

digonal axis.

CASE B. If ¢=60°, 6#0 (doubly-rotated cuts), then sin 3¢=0,

cos 39=-1 and (16) again hold so that the symmetry is the same as for
rotated-Y-cuts. Even if 6 is the same in A and B, all the surviving
constants in B (except for 13 which remains fixed) are different from
the corresponding ones in A as the last term in each cpq has its sign
reversed. However, if 6 in B 1is the negative of 8 in A, nine of

the constants are the same for the two cuts and the remaining four have

the same absolute values in A and B but are of opposite sign.




To summarize the properties of the two sets of constants cpq(¢,e):

cpq(o,e) cpq(60°,-e) for pq = 11,12,13,22,23,33,44,55,66,

- o _ - (17)
cpq(O,e) cpq(60 »=8) for pq = 14,24,34,56.

The displacement equations of motion reduce to

2

2 2
(€1797 * Cgdy * Co5d3 7 2C5gd 030Uy + [lcqptege)dgdy + (cqptesq)d ]y,

+ Lleggressldgy + (cyqtcse)dqdduy =0l s
[(Cy9¥Cer)d53, * (Cya*Cer)d43,]uq + (c 32-+c 32-+c 32-+2 Chpdada)u
12°°667°1°2 147%56/°3°1"1 2292 7 44737 “66% 2492931492
+ [c 32 +c 32 +c 82 + (ChatCra)d,04]u, = pii
5691 24°2 7 ©34°3 237%44/92°3443 T PU7»
[(Cyy¥Cre)d,3, + (Cqa*Crp)dqd,]uq + [c 32+c 82+c 32+(c +Can)3,34Ju
127%667/°1°2 147%56/°3%14%1 56°1 7 2492 7 ©34°3 237%447/9293442

2 2 2 o
*+(c3393 + Cggd) * Cggdp+2 C3q4d533)u3 = piig,

(18)

and the conditions (13), (14), (15) for traction-free boundaries reduce to:

e e e = e i s

o o e o, S




on Xy = constant:

™

T2

T3

=Ty = oqqUy,q t Cplp,2 t C33 3t Sqaluzp *up 3) =0,

Ty = cggluy 3+ u3 ) * cgeluy § +uy o) = 0;

on x2 = constant:

T2

T

T3

22 °

Te = cgeluy, 3+ u3 ) * cggluy 1+ uy 5) = 0,

2 = Cra¥,1 * CaaUp 0 * Co3uz 3+ Cpalug 5 Uy 5) =0, (20)

Tg = Crqup,1 * Coq¥ 2 * C3gu3,3 * Caqluz o + Uy 3)

on X3 = ¢onstant:

T3

T

T3

= Tg = cggluy 3+ u3 ) * cgeluy  +uy 5) =0,

2°

T4 = C1a¥1,1 * o,z * C30t3,3 % Caglizp * up 50 =0, (21)

= T3 = Cu3up,1 ¥ CoqUp o * Caguz 3 ¥ Caaluz 5 + Uy 5) =0,

Any solution of the equations of motion (and boundary conditions, if

any) referred to rotated axes with ¢=0, 6=6' is the same solution, at

least in form, referred to axes with ¢=60°, 6=-8'. Whether or not

the solutions are the same numerically depends on the occurrence of g

C24° C34° Cs6

as even or odd powers or products in the resulting formulas.
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In the following Sections, we review solutions obtained previously
for cpq(o.e) and determine if the transition to cpq(60°, -8) changes

the numerical results.

I11. Plane Waves in a Plate

In a plate with faces at Xy = + b, we consider waves propagating

in the direction of the two-fold axis of symmetry X7t

u; = A] sin(gzx2 + §3x3) sin(glx] - wt

Uy = = Ay cos(Eyx, + E5x4) cos(Egxg - 3 (22)

- A3 cos(&zx2 + £3x3) cos(slx] - we) .

Upon substituting (22) in (19) and setting the determinant of the coeffi-

cients of the Aj equal to zero, we find the equation

(23)

>
(]
>

2, .
Ay = 845V = 0, i3 Ayio

in which 51j is the Kronecker delta,
. 2,z T S I

= ~ 2 -~ 2 -~ = -~ -
Agp = VHEB HC T 42 EygBTy  Agy = (T4¥T54)8 + (,4%%55)T, (24)

= ~y 2 -~ - -~ ~
A33 ® C55*CaqB ”333‘2““3451"' Mg = (148508 + (B 4#Eg() T,




e
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S . _ - 2 _ 2,22 . 2 2
Cpq‘cpq/csss 8'52/€]9 r‘£3/€]s v 'Q/E] = pw /C66€]‘

(25)

In (25), B and I are the ratios of the wave length along x; to the
wave lengths along X5 and X3, respectively; V is the ratio of the
velocity to the velocity v = (c56/p)%; §](= ZE]b/w) is the ratio of the
thickness, 2b, of the plate to the half-wave-length along X13 and Q
is the ratio of the circular frequency w to the frequency mv/2b.

For given Band I' , (23) is a bicubic in the velocity ratio V: 1

6 2

Caet+rcvl+n = o0, (26)
in which
B o= - Dyt *0gs)
C = Aushan * Aaghea + Ayqdon = A8, = 22, = a2 (27)
22233 * A3zt At T A2z T A3t A
_ 2 2 2
D = AjyAag ¥ Aghay * Agadyy - MpAaataz t 2 Axgigyiyp

The coefficients of the bicubic are different for €14°24342 56
positive and negative. Hence, for given B and T' , the roots of (26)
yield different sets of velocity ratios V],VZ,V3 for the rotated-Y-cut
with cpq(O,e) and the doubly-rotated-cut with cpq(60°,- 8). An ex-
ample is illustrated in Fig. 2 in which either B8 1is the abiscissa and ?
T=10 or vice versa. In either case, the lowest velocity ratios Vq

exhibit little difference for the two cuts -- and this is the branch which
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would contribute predominantly to the fundamental thickness-shear mode of
the plate, However, the differences for the upper velocities are larger,
at least for large B and ' --as much as 13% for B =T = 10. These

differences survive any boundary conditions that may be applied.

IV. Ekstein's Solution

It will be observed, in Fig. 2, that the velocity ratios are the
same fcr Case A and Case B if T (or 8) is zero. This is the situation
for modes with straight crests along X4 (or x2). In the case T'=0,

A23 and A31 change sign, in the passage from case A to Case B, but
they enter the coefficients of the bicubic (26) only as their product and
as squares -- resulting in no change in roots. To examine whether this per-

sists after the introduction of free faces of the plate, we consider Ekstein's

solution [3] for modes with straight crests along X3 in a plate with free

faces on X,=%b.

With T=0, and fixed £, and V, (23)yields three roots
1

sﬁ s Nn=1,2,3. Thus, for steady state vibrations, (22) may be written as
3
u, = A, sin E.8 X, sin £,x elut
1 b= "n 1"n"2 1" i
- jwt
Uy ---n= A2n COS £1B X, COS EyX; € . (28)
Uqy == A, COS £.8 X, COS £.X elut
3 3n 1°n"2 "M °
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Then the boundary condi .~ns (20):

= i= = +
sz 0, J§=1,2,3, on x,=*b, (29)

result in Ekstein's frequency equation; which may be written in the form [4]

Ll = 0, 1.n=1,2,3, (30)
where
Mp © (BnL1n * LZn * ESGL3n) cot Bnglb’
Moo = Tighin * Bn(Eaaban * Caaban) - (31)
Hap E14L1n * Bn(EZ4LZn * E44L3n)’
L. = cof(r . -& .Vz)/cof(A - Vz). (32)
in ni nin nn n

In the passage from cpq(O,e) to cpq(60°, -6), the Ly, and,
hence, the Bin (which depend on c]4,c24,c56) change sign for subscripts
13,31,23,32 while the remaining terms in (31) and (32) do not change. But
those Win which do change appear only as product pairs in (30) and, hence,
the roots of (30) do not change. These roots are usually depicted graphic-
ally as a many branched dispersion relation between Q (as ordinate) and

E] (as absicissa):

2 = alE,) (33)
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as illustrated in [4]. Alternatively, the abscissa could be I/E]:

q = 6(1/5,). (34)

Suppose the plate has additional bounding planes xp=ta at which the
conditions are uniformly point-mixed, e.g., vanishing uz,T.“,T]3 correspord-
ing to "simply supported" in the elementary theory of flexural vibrations of
plates. For real roots of (30), these conditions are satisfied by & =mm/2a,
where m is an even integer; so that, for real roots, the dispersion rela-

tion converts to

g = fitasmb) . (35)

Elimination of m from the abiscissa requires only that each branch of the
dispersion relation (35) be replaced by a sequence of branches obtained by
muitiplication of its absicssa by a sequence of integers. In this way, the
branches of the dispersion relation for the infinite plate are converted to
the branches of the frequency spectrum, Q vs a/b, of the "simply supported”
plate. As the process does not involve 142524 and Cgg anew, the fre-
quency spectrum is not altered by a change of cpq(O,e) to cpq(60°,-e).
There is no closed solution of the three-dimensional equations for
the case of free boundaries at xy=+a and the situation there is not

obvious inasmuch as c]4 and Cg6 enter into the traction-free conditions

T]] = T]Z = T]a = 0 on X1=+a (36)

as may be seen in (19).




V. Effect of Free Edges

As a substitute for the unavailable extension of Ekstein's solution
of the three-dimensional equations to accommodate a pair of parallel, free
edges, there exists a solution of two-dimensional approximate equations [5].
For the case of straight crested flexural waves travelling in the direction
of x; in a plate with free faces at Xp=4b, the three dimensional

displacements are approximated by

TN >f.2';](x])e1“)t , uy = Uz(x1)e“"t . ug = U3(x1)eht (37)

and the differential equations governing them are

) 2
K Copls 9y *xCelUp 1yt ¥y 3) = - auUy
) 2
CosUs 11 * kegelUp 17 * Uy 3} = - ew'Uy,s (38)
Yq ¥ -3b'2[cu rle. (U +w)]=-‘2
1%1,11 KCg6v3,1 7K CeelY2 0™ ow Wy s
where
2 2 ) 2 2 2
KT = m0/12, yqq = g m€qp/Cpp - (€ = CqCoa) /egg = Cop/cyr) (39)

There is no change of sign of m with change of sign of C1g and Cprgs

s0 only cggs N (38), changes sign with the passage from cpq(o,e) to

cpq(so "e) .
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The displacements are taken as

Uy = Ayb sin &xy, Ug = Agb sin &x, ¥y = Ag cOs E£x; . (40)
Then, from (38),

~2 2 ~2 oy
(€7 - 3Q%)A, + €Ay + EAy = 0,
S £ + (6. 2% - 30%)A, + S BA, = 0O (41)
Cg8 Ay 55 3 * C56thy ,
~ A ~ A A2 2 _
ERy *+ Cglhy + (Y& + 1 - a%)A, = 0,
where

~ - PN - 2 - _ ~ _ 2
§=Eb.  Co57Cos/k Cggr  Cgp ™ CselkCesr Y117 Yi1/3< cgg - (42)

The determinant of the coefficients of the Ai in (41), set equal to zero,

is the equation

~ ~ Az 56 2 ~ ~ ~ Az A4
Y11(Co5 = Cggle - 737y (1 +Cgg) + g5 - Cgglt
+ 3{22[92-855(1 -g%) + 3§nnz+’c‘56]22+994(1-92) = 0, (43)

which, for a fixed frequency ratio ., is a bicubic in EZ whose roots

are independent of change of sign of C14°C24°S5¢ - Thus, as in the three-

dimensional case, the dispersion relation does not change with passage from

°‘
cpq(o.e) to cpq(60 »=0) .




.
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For each 2, (43) has three roots Eﬁ , n=1,2,3, and (41) has

three sets of amplitude ratios A,:A3:A,.  Let An , n=1,2,3, be the

th

value of A4 for the n root Eﬁ ; and let

A
_ M2 s a2 g2 2 A a2
azn = A4 = €n(C56gn+3n 'Csssn)/An’
e R (44)
%n 7 R, 565 & /4y
R 2y, 22 2 2 24
8y = (&, - 307 (cggly - 397) - g8y

for each root Eﬁ. Then (40) may be written as

3
bZKu sin £ X, »
2 n=] N2n n~l

U =
3
u; = b; Rog, sin £ %, (45)
3
¥ = ; R, cos £,% -

The conditions for free edges at x;=*a are: the horizontal and

vertical shears, NS and Q] » and the bending moment, M1, vanish., Thus,

on xy*ta,




Ns = 2b[C55U3‘] + K CSG(UZ,I + W])] = 0,
Moo= (2b3/3“n“’1.1 = 0.
Upon substituting (45) into (46), we obtain

3

; An&m cos ga = 0,
3

; An°‘2n cos ga = 0, (47)
3

; Angn singa = 0,

where
®p = Cs5%3pp * c56(02n£n *1),
(48)

Opn = Cug%anbn * K Ceglagply + 1) .

The frequency equation is obtained by setting the determinant of the

coefficients of the An in (47) equal to zero:

K] tan £,a + Rz tan £,a + Ay tan g2 = O (49)




where ~ PO, - - *
Ay = &ylagpaps - aguyy) s !

; Ay = Eplaggap; = ap3ay9) s (50)

A3 = E3(a14ap, = apay,) -

Upon substituting (44) in (48) and the result in (50), the frequency equation

(49) becomes

E]A](Eg-'ég) tan £, EZAZ(Eg-Ei) tan 52a+€3a3(2f-ég) tan £5a = 0: (51)

an equation which does not change when cpq(o,e) is replaced by cpq(60°,-e).

VI. Vibrations of a Strip

An exact solution of the three-dimensional equations exists for
coupled thickness-twist and face-shear modes of vibration in a rotated-Y-cut
strip with a parallogrammic cross-section and all four faces free of traction

[6]. The displacements are up=u3=0 and, omitting a factor eiwt,

up = A sin ExX,y C€OS 53(256x2-x3) + B sin EpX, sin £3(856x2-x3) l

+ Ccos gyx, cos 53(656“2 - x3) + D cos Eyx, sin £3(Egex,mx3) 4

(52) i

where 256":56/‘:66 . as before in (25).
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The equations of motion (18) are satisfied if

2 . . 2 2 ] 2
pw” = Ceglp * Ye5€3+ Y55 = Cg5 - C56/Cee (53)

and the faces at x,=+b satisfy the traction-free conditions (20) if

ZEZb = m (54)

where m is an odd integer for solutions A and B and an even integer for
solutions C and D.

A pair of planes parallel to the x]-axis, making dihedral angles a
with the Xq = Xy plane and distant 2c cosa apart, as illustrated in Fig. 3,

are free of traction if

a = arc tan E56 (55)

and

26, = nm ) (56)

where n 1s an even integer for solutions A and C and an odd integer for

solutions B and D.

The frequencies are

2 2
w = m(i@)k 1+ " Y55b : (57)
B\ mzcasc2 )
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When cpq(O,e) changes to cpq(60°,-e) » the frequencies do not

change as cgc enters as cge ; but the mode-shape (52) changes and o,
in (55), is reversed in sign so that the cross-section changes, as illus-
trated in Fig. 3. The values of *a for the full range of values of ©

are illustrated in Fig. 4.

. C s e e e —— -
R ’
LAY




(1]

(2]

[3]

[4]

(5]

(6]
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CAPTIONS FOR FIGURES

Rotated-Y-cut and doubly-rotated-cut quartz plates.
X.l and X3 are digonal and trigonal axes of symmetry,
respectively.

Comparison of wave velocities for cpq(o,e) and cpq(60°,-e)
as functions of the ratios, B and ' , of wave lengths in
the X5 and X3 directions to the wave length in the direction
Xy of the wave normal.

Cross sections of strips.

Variation of dihedral angles, a , between face and edge
planes of strip for cpq(o,e) and cpq(60°,-e) as functions
of 8.
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